Write your name here Surname	Other nam	es
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number
Physics Advanced Unit 6: Experimenta	al Physics	
Thursday 16 January 2014 Time: 1 hour 20 minutes	– Afternoon	Paper Reference WPH06/01
You must have: Ruler		Total Marks

Instructions

- Use black ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 40.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- The list of data, formulae and relationships is printed at the end of this booklet.
- Candidates may use a scientific calculator.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

P 4 3 1 1 7 R A 0 1 1 6

Turn over ▶

PEARSON

Answer ALL questions in the spaces provided.

A student determines the circumference C of a glass test tube by wrapping a piece of string around the outside. C is given by

$$C = (x/10) - \pi d$$

where x is the length of string wrapped 10 times around the outside of the test tube and d is the diameter of the string.

(a) (i) She measures the diameter d of the string as 1.70 ± 0.04 mm.

State **one** precaution she should take when using a micrometer screw gauge to make this measurement.

(1)

(ii) She finds $x = 803 \pm 4$ mm.

Use the equation above to calculate a value for C.

(2)

(1)

 $C = \dots$

(iv) Show that the uncertainty in πd is about 0.13 mm.

(iii) State why the uncertainty in x/10 is 0.4 mm.

(1)

(v) State why the uncertainty in C is obtained by adding together 0.4 mm and 0.13 mm.

(1)

(vi)Calculate the percentage uncertainty in your value for C.

(1)

Percentage uncertainty =

		$A = C^2/4\pi$	(1)
(ii) Calculat	e the percentage u	uncertainty in your value for A	A =
\ TI		_	certainty =
of the test tu		method to find A by measuring allipers. The precision of the	_
She records	the following mea	asurements.	
She records D/mm	the following mea		23.91
D/mm	23.96		
D/mm (i) State wh	23.96 y digital callipers	5 23.86	uring instrument.

2 One method to find the temperature of a Bunsen burner flame involves heating a metal screw. The screw is held in the flame and then cooled in a test tube of water.

The thermal energy lost by the screw raises the temperature of the water so that energy lost by screw in cooling down = energy gained by water in heating up For both the screw and the water, energy transferred ΔE is given by

$$\Delta E = mc\Delta\theta$$

where m is the mass, c is the specific heat capacity and $\Delta\theta$ is the change in temperature of either the screw or the water. The values of c can be found on the internet.

For the method described above:

(a)	State	uie	measurements	Ю	De	made,

(2)

(b) state **one** technique to improve accuracy,

(1)

(c) give **two** sources of error in your experiment,

(2)

(d) explain which measurement is likely to give the greatest percentage uncertainty,

(2)

(e) comment on safety.

(1)

A metre rule has a small hole drilled at the 5 cm mark. The rule is hung on a horizontal pin passing through the hole.

The rule is rotated through a small angle and released. It then oscillates about the pin as a pendulum with a time period T.

There are five more holes drilled at 5 cm intervals down the rule. The rule is hung from each hole and the distance h from the pin to the 50 cm mark is recorded. T is determined for each value of h.

A graph of T against h is plotted.

) (i) Draw the line of best	fit on the graph.	
		(2)
(ii) Use your line to deter	rmine the value of h that would produce	the smallest value of T .
Record these values.		(1)
		(1)
$h = \dots$	$T = \dots$	
b) The variables T and h are	e related by	
	$T^2h = \frac{4\pi^2h^2}{g} + C$	
where C is a constant.		
The graph of T against h	does not produce a straight line.	
State:		
• the graph you would	plot to get a straight line	
 how you would deter 	rmine a value for C from this graph	
• the unit for <i>C</i> .		(3)
		(0)
	(Total for	Question 3 = 6 marks)
	(10001101	(

	Describe how discrete es	nergy levels result in	n the emission of photons of specifi	C
	frequencies.	nergy ievels lesuit ii	i die cimission of photons of specifi	C
				(2)
(b)	Theory predicts that the	fraguancy fof the n	hotons amitted is related to the prot	on
	number Z of the element		hotons emitted is related to the prot	JUII
		$f = P Z^n$		
	where P and n are const	$f = P Z^n$		
	where P and n are constant.	ants.	vio a straight line of gradient n	
		ants.	ve a straight line of gradient <i>n</i> .	(2)
		ants.	we a straight line of gradient n .	(2)
		ants.	ve a straight line of gradient <i>n</i> .	(2)
		ants.	ve a straight line of gradient <i>n</i> .	(2)
		ants.	ve a straight line of gradient n.	(2)
		ants.	ve a straight line of gradient n.	(2)
	Show that a graph of ln	ants. f against ln Z will gi	ve a straight line of gradient n.	(2)
		ants. f against ln Z will gi	ve a straight line of gradient n.	(2)
	Show that a graph of ln	ants. f against ln Z will gi	ve a straight line of gradient n.	(2)
	Show that a graph of ln	ants. f against ln Z will gi	ve a straight line of gradient n.	(2)
	The following data were	ants. f against $\ln Z$ will give recorded. $f / 10^{15} \mathrm{Hz}$	ve a straight line of gradient n.	(2)
	The following data were 8	ants. f against $\ln Z$ will give recorded. $f / 10^{15} \text{Hz}$ 1.22	ve a straight line of gradient n.	(2)

(i) Use the grid opposite to draw a graph of $\ln f$ against $\ln Z$. Use the columns in the table for your processed data.

75.0

155

(4)

56

80

i) Use your graph to determine a value for n.		i) Use your graph to determine a value for <i>n</i> .				
i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> . (2)				
i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> . (2)				
i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> . (2)				
i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> . (2)				
i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> . (2)				
i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> . (2)				
i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> . (2)				
i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> . (2)				
i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> . (2)				
i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> . (2)				
i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> . (2)				
i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> . (2)				
i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> . (2)				
i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> . (2)				
i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> . (2)				
i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> . (2)				
i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> . (2)				
i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> . (2)				
i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> . (2)				
i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> . (2)				
i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> . (2)				
i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> . (2)				
i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> . (2)				
i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> . (2)				
i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> . (2)				
i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> . (2)				
i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> . (2)				
i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> . (2)				
i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> . (2)				
i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> . (2)				
i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> . (2)				
i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> . (2)				
i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> . (2)				
i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> . (2)				
i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> . (2)				
i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> . (2)				
i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> . (2)				
i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> . (2)				
i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> .	i) Use your graph to determine a value for <i>n</i> . (2)				
		(2)				
		(2)				
		(2)				
	(2)		ii) Use your graph	to determine a value for n .	<u></u>	
					n =	
	$n = \dots$	$n = \dots$				

d) Theory suggests that $n = 2.00$ Use your value for n to comment on this suggestion.	
	(2)
e) Describe how you would use your graph to determine a value for <i>P</i> .	(2)
e) Describe how you would use your graph to determine a value for <i>P</i> .	(2)
e) Describe how you would use your graph to determine a value for <i>P</i> .	(2)
e) Describe how you would use your graph to determine a value for <i>P</i> .	(2)
e) Describe how you would use your graph to determine a value for <i>P</i> .	(2)
e) Describe how you would use your graph to determine a value for <i>P</i> .	(2)
e) Describe how you would use your graph to determine a value for <i>P</i> .	(2)

TOTAL FOR PAPER = 40 MARKS

List of data, formulae and relationships

Acceleration of free fall $g = 9.81 \text{ m s}^{-2}$ (close to Earth's surface)

Boltzmann constant $k = 1.38 \times 10^{-23} \text{ J K}^{-1}$

Coulomb's law constant $k = 1/4\pi\varepsilon_0$

 $= 8.99 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$

Electron charge $e = -1.60 \times 10^{-19} \text{ C}$

Electron mass $m_e = 9.11 \times 10^{-31} \text{kg}$

Electronvolt $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$

Gravitational constant $G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$

Gravitational field strength $g = 9.81 \text{ N kg}^{-1}$ (close to Earth's surface)

Permittivity of free space $\epsilon_0 = 8.85 \times 10^{-12} \text{ F m}^{-1}$

Planck constant $h = 6.63 \times 10^{-34} \,\mathrm{J s}$

Proton mass $m_{\rm p} = 1.67 \times 10^{-27} \, \text{kg}$

Speed of light in a vacuum $c = 3.00 \times 10^8 \,\mathrm{m \, s^{-1}}$

Stefan-Boltzmann constant $\sigma = 5.67 \times 10^{-8} \ W \ m^{-2} \ K^{-4}$

Unified atomic mass unit $u = 1.66 \times 10^{-27} \text{ kg}$

Unit 1

Mechanics

Kinematic equations of motion v = u + at

 $s = ut + \frac{1}{2}at^2$

 $v^2 = u^2 + 2as$

Forces $\Sigma F = ma$

g = F/m

W = mg

Work and energy $\Delta W = F \Delta s$

 $E_{\nu} = \frac{1}{2}mv^2$

 $\Delta E_{\rm grav} = mg\Delta h$

Materials

Stokes' law $F = 6\pi \eta r v$

Hooke's law $F = k\Delta x$

Density $\rho = m/V$

Pressure p = F/A

Young modulus $E = \sigma/\varepsilon$ where

Stress $\sigma = F/A$ Strain $\varepsilon = \Delta x/x$

 $E_{\rm el} = \frac{1}{2}F\Delta x$

Elastic strain energy $E_{\rm e}$

Unit 2

Waves

Wave speed $v = f\lambda$

Refractive index $_{1}\mu_{2} = \sin i / \sin r = v_{1}/v_{2}$

Electricity

Potential difference V = W/Q

Resistance R = V/I

Electrical power, energy and P = VI efficiency $P = I^2R$

 $P = I^{2}R$ $P = V^{2}/R$ W = VIt

% efficiency = $\frac{\text{useful energy output}}{\text{total energy input}} \times 100$

% efficiency = $\frac{\text{useful power output}}{\text{total power input}} \times 100$

Resistivity $R = \rho l/A$

Current $I = \Delta Q/\Delta t$

I = nqvA

Resistors in series $R = R_1 + R_2 + R_3$

Resistors in parallel $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$

Quantum physics

Photon model E = hf

Einstein's photoelectric $hf = \phi + \frac{1}{2}mv_{\text{max}}^2$

equation

Unit 4

Mechanics

Momentum p = mv

Kinetic energy of a

non-relativistic particle $E_k = p^2/2m$

Motion in a circle $v = \omega r$

 $T=2\pi/\omega$

 $F = ma = mv^2/r$

 $a = v^2/r$

 $a = r\omega^2$

Fields

Coulomb's law $F = kQ_1Q_2/r^2$ where $k = 1/4\pi\epsilon_0$

Electric field E = F/Q

 $E = kQ/r^2$

E = V/d

Capacitance C = Q/V

Energy stored in capacitor $W = \frac{1}{2}QV$

Capacitor discharge $Q = Q_0 e^{-t/RC}$

In a magnetic field $F = BIl \sin \theta$

 $F = Bqv \sin \theta$

r = p/BQ

Faraday's and Lenz's Laws $\varepsilon = -d(N\phi)/dt$

Particle physics

Mass-energy $\Delta E = c^2 \Delta m$

de Broglie wavelength $\lambda = h/p$

Unit 5

Energy and matter

Heating $\Delta E = mc\Delta\theta$

Molecular kinetic theory $\frac{1}{2}m\langle c^2\rangle = \frac{3}{2}kT$

Ideal gas equation pV = NkT

Nuclear Physics

Radioactive decay $dN/dt = -\lambda N$

 $\lambda = \ln 2/t_{_{1/2}}$

 $N = N_0 e^{-\lambda t}$

Mechanics

Simple harmonic motion $a = -\omega^2 x$

 $a = -A\omega^2 \cos \omega t$ $v = -A\omega \sin \omega t$ $x = A \cos \omega t$ $T = 1/f = 2\pi/\omega$

Gravitational force $F = Gm_1m_2/r^2$

Observing the universe

Radiant energy flux $F = L/4\pi d^2$

Stefan-Boltzmann law $L = \sigma T^4 A$

 $L=4\pi r^2\sigma T^4$

Wien's Law $\lambda_{\text{max}} T = 2.898 \times 10^{-3} \text{ m K}$

Redshift of electromagnetic

radiation $z = \Delta \lambda / \lambda \approx \Delta f / f \approx v / c$

Cosmological expansion $v = H_0 d$

BLANK PAGE 16